
The logo left was drawn by Brother James Kane of the
Holy Cross High School in Waterbury, Connecticut, a
member whose first letter arrived in the calligraphy

of a medieval monk; we asked for a logo from his hand, and here it is.

NEW ASSOCIATE EDITORS The Gazette is proud to announce three new Associate
Editors: Terry Peterson, Associate Editor at Large:

[mBASIC, mPASCAL, mAPL, 6502 Machine Language, and mFORTRAN]; Roy Busdiecker,
Associate Editor at Large [6502 Machine Language, BASIC, and whatever else he's
curious enough to peer into]; and Stephen Zeller, who will concentrate on APL.
The first of Steve's articles on APL appears in this issue. Our previous Assoc­
iate Editors [Gary Ratliff, 6809/6502 Asssembler and Robert Davis, mPASCAL] of
course remain with us, though Bob's been seriously ill. We still need someone to
handle mCOBOL and another hand at mFORTRAN. Many hands make light work, and
we'll have a far broader point of view. Volunteers in mCOBOL and mFORTRAN please
step forward.

ON BEING A BIT MULTILINGUAL The editor has been dragged, screaming and
kicking, into all the SPET languages, hav­

ing a firm rule that the Gazette publishes only what's been tried, understood,
and run without trouble. And so, a few words of advice to the readers: Please do
not remain totally monolingual because you have a favorite language and are not
interested in anything else. What is said in one language often applies to other
languages. Examples: (1) the mBASIC screen dump printed in Vol. 1, No. 2, was
adapted to APL by one multilingual reader. We print it this issue; (2) the set­
time, set-date process discussed by P.J. Rovero in this edition applies, appar­
ently, in all languages but APL; (3) the DOS utility printed in Vol. 1, No. 3
handles files in all SPET languages, including BASIC <4.0 and APL— if you capit­
alize BASIC filenames and enter APL filenames in lower case. You can read all
directories from 6809 mode (you cannot from 6502). A DOS program in any 6809
language but APL will also work in all languages. You cannot handle BASIC 4.0
from APL easily since APL sends lower case Roman to the DOS, despite the upper
case characters on the screen; though if you're good at Sanskrit, you can use
the upper case APL symbols to substitute (not easy!); (4) the article on tabset
by Dr. John Spencer, this issue, though written in mBASIC, provides POKE and
PEEK methods to reset tabs from program.in any language which will accomodate
POKES and PEEKS; (5) what we say this issue about text-processing using the mic-
roEDITOR applies to every language, including APL— and to both WordPro and Word-
craft files. Confine yourself to one language and you'll miss a lot!

mBASIC turns out to be a lingua franca for the Gazette; most programmers under­
stand it, and, unlike BASIC 4.0, it is highly structured and highly readable. If
general material were presented in any other language (PASCAL? APL?), how many
could read it?

WATCOM ANNOUNCES MICROPIP AND THE Waterloo Computing Systems, Ltd. announced
6502 ASSEMBLY-LANGUAGE SYSTEM availability of both packages, left, after

(December infoWAT) our January issue went to press. From what
we have learned, the 6502 package does for

the 6502 what the present DEVELOPMENT package in SPET does for the 6809. The red
herring says it allows you to develop software for other Commodore machines—
8032, 4032, VIC 20, or the 64. It uses the mED, in 6809 mode. We've ordered it
and will get an evaluation as soon as we can. MicroPIP (peripheral interchange
program) provides utilities for common operations on HOST, DISK, and SERIAL
devices. When we learned it also incorporated direct commands such as BACKUP and

SuperPET Gazette— Vol. 1 No. 6 -37- February/March 1983

FORMAT, we hurled a check pronto for a copy. Will report. WATSOFT Products,
Inc., 158 University Avenue West, Waterloo, Ontario, Canada N2L 3E9, distrib­
utes. Prices: $75.00 for microPIP; $250.00 for the 6502 package.

If you don't subscribe to infoWAT, consider it. December has two helpful art­
icles, one on Macros, and a second on data transfer between computers using the
SPET serial port. Price: $10.00 for ten issues (U.S. in the U.S., Canadian in
Canada), from infoWAT, P0 Box 9^3i Waterloo, Ontario, Canada N2J 4C3. Four
printed pages, and never an issue so far without useful information.

While on useful publications: MICRO magazine (MICRO INK, 3^ Chelmsford Street,
PO Box 6502, Chelmsford, MA 01824, $24.00 per year) has begun support for Super-
PET. See an article on mBASIC by Loren Wright in Oct. '82, a comprehensive re­
view of WordPro vs. Wordcraft in Nov. '82; one on the SPET character set by
Terry Peterson in Dec. *82, followed by an article on mAPL, again by Terry
Peterson, in Feb. '83. In addition. Dr. William Dial, who handles the 6809 bib­
liography for MICRO, asked for and now receives the Gazette so that our material
may be incorporated. We're highly pleased to see some support at last.

FISHER SCIENTIFIC: We've done business with Fisher for many years; the firm
MAINTENANCE & SALES used to handle high-quality chemicals and lab equipment,

and we always got good quality and good service. Now, we
find that Fisher has expanded into much more complex gear, is a dealer for Comm­
odore, and, more important, offers maintenance and repair services for Commodore
computers. It's no surprise that a firm dealing in laboratory equipment must be
into computers; or that the Commodore line was picked, considering that marvel­
lous IEEE port and its adaptability to lab uses. This arrangement should plug
one of the weak points in the Commodore line— service. We've talked to the main­
tenance people at Raleigh, N.C., and find them knowledgeable. We'd like reports
on the service you get from Fisher. Here are U.S. and Canadian locations:

Atlanta 404 449 5050 Philadelphia 215 265 0300
Boston 617 391 6110 Pittsburgh 412 784 2600
Chicago 312 773 3075 Raleigh 919 876 2351
Cincinatti 513 793 5100 Rochester 716 464 8900
Houston 713 495 6060 S$n Francisco 408 727 0660
Los Angeles 714 832 9800 St. Louis 314 991 2400
New York City 201 379 1400 Washington, D.C. 301 587 7000
Orlando 305 857 3600

Edmonton 403 483 2123 Quebec 418 656 9962
Halifax 902 469 9891 Toronto 416 445 2121
Montreal 514 342 5001 Vancouver 604 872 7641
Ottawa 613 225 6752 Winnipeg 204 633 8880

NEW PATCH FOR MICROBASIC Waterloo Computing Systems Ltd. has forwarded a new
patch for mBASIC, Verson 1.1 which
arrived a little too late for our
January issue. We've patched using
it, and the 80-character string bug
as well as the printer bug reported
last issue have been fixed. The ver­
sion to the left uses integers to
save time, and runs in 36 minutes.

The copy printed came straight off
disk after we'd patched and tested

February/March 1983

10 ! patch for MicroBASIC
20 open #2, "disk/1.BASIC,PRG", input
30 open #3, "disk/0.BASIC,PRG", output
40 x = peek(86)*256 + peek(87) + 4
50 y = peek(x)*256 + peek(x + 1) + 1
60 poke y, 0, 0
70 curr_posnt =1 : p% = 1
80 call patch (39, 24«512+31)

(cont. next page)
SuperPET Gazette— Vol. 1 No. 6 -38-

(cont. from previous page)

90 call patch (0, 26*512+183)
100 call finish_up
110 close 02 : close 03
120 1
130 proc patch (new_bytej, address?)
140 for J% = curr__posn% to (addressj-p%)
150 get0 2, a$
160 if a$ = "" then a$ = chr$(0)
170 print 03, a$;
180 next '
190 get 0 2, a$
200 print 03, chr$(new_bytet);
210 curr_posnJ = address % + p>
220 endproc
230 !
240 proc finish_up
250 on eof ignore
.260 loop
270 get 0 2, a$
280 if io_status = 2 then quit
290 if a$ = "" then a$ = chr$(0)
300 print 03, a$;
310 endloop
320 endproc

the new version. Again Waterloo has
rendered aid and assistance quickly
and we deeply appreciate the help.

As with the original patch, put a
backup language disk in drive 1 and
a disk to copy to in drive 0; then
run the program. After trial of the
patched version, scratch BASIC on
the backup and copy the patched ver­
sion of BASIC to the backup disk.
The backup's now a new master, with
correct programs on it.

APL DOS COMMANDS

Thanks to Roy Busdiecker, we print
the last of the DOS commands this
issue. We knew for some time that
the APL tutorial disk had a func­
tion called 'APL.DOS', but hadn’t
figured out how to use it for lack
of examples. Roy pointed out that
the function contained a function
(layers within the onion) entitled

'DESCRIBE', which illustrates the DOS commands. You get it by)L0AD APL.DOS, and
then pressing PF3, which names the functions within APL.DOS. 'DESCRIBE* may be
listed with 7 DESCRIBEE □] <RETURN>, and is easily dumped to printer with the APL
screen dump printed elsewhere in this issue. Left, below is an example of an

APL 'immediate mode' DOS command; it works
DOS ' R0:POKEPIX=POKEPIC' <RETURN> so long as 'APL.DOS' is in workspace, just

as an immediate mode mBASIC procedure works
if in RAM and called. Enter the command exactly as shown left, above. Do NOT use
the the double quotation marks found in 'DESCRIBE'. (All DOS commands are summ­
arized in Vol. 1, pp. 15-16.) The command above gives the new name of POKEPIX to
old file P0KEPIC on drive 0. Roy Busdiecker gives us considerable insight into
the relationship of the APL and Waterloo fonts, and into the function 'APL.DOS'
with the the short APL function we print at left, below— a direct APL command.

Clear APL workspace with)CLEAR <RETURN>
VDOg and enter the function (See Steve Zeller

[2] I15- 0 ™ £ £ DOS^RETURN^/and
[3] y it will change filenames exactly as the

previous DOS command did. While the func
tion is still on screen, enter two new
APL functions, P0KEDN (to put the Water­

loo font on screen); then enter P0KEUP, which returns you to APL font. Do this
before you 'run' either function. Then 'run' them. You will immediately see why
the command directly above works— the 'x' sign (multiply, not letter 'x') is an
'=' sign in Waterloo; the proper ordinate (ASCII on SPET) is thus sent to
channel 15 of the DOS; note that rho in APL (SHIFT R) sends to DOS the ordinate

SuperPET Gazette— Vol. 1 No. 6 -39 February/March 1983

of the capital 'R* required for this DOS command. If you examine 'APL.DOS1, you
see the conversion to ASCII.

V POKE UP V POKED N
[1] QAVl 12] QPOKE 59468 [l] D/W[14] □POKE 59468
[2] V [2] V

After the information above came in, we received a letter from Dr. John C.
Wilson of the Computer Systems Group at Waterloo (support from Waterloo is
superb), which confirms Roy Busdiecker's observations, and adds the following:

DOS 'Cl:LONGNAME=0:LONGNAME' A "known problem is that APL truncates (to around
(the problem) 30 characters) the lefthand argument of [] CREATE

* * * [Ed: see below], which is used in line 5 of DOS.
This makes some operations fail. A common example

DOS 'C1:X=0:L0NGNAME' is in copying files with long names [left, above].
DOS 'R1:LONGNAME=X' A bypass is to use the following commands [left],

(the solution) instead." The solution copies the file as 'X' and
then renames it. [Line 5 of function DOS, to which

Dr. Wilson refers, follows: [5] ('IEEE8+15.' , C) □ CREATE 1]. You may dump
both 'DESCRIBE* and 'APL.DOS' from the screen, after listing, with the APL dump,
this issue.

DOS COMMANDS THE SIMPLE WAY: Jim Swift, RR03, Nanaimo, B.C. Canada, V9R 5K3,
THE DISCOVERY BY JIM SWIFT dropped us a note and said he could enter any

DOS command in mPASCAL with the 'get' command
g ieee8-15.N0:newdisk, id printed left. A 'get' ???. It works. Curious,

we tried ALL the DOS commands in ALL repeat ALL
the languages except APL (in both Versions 1.0 and 1.1), and are delighted to
report that the method works in all those languages without exception; we in­
clude the mED in mBASIC and mED in DEVELOPMENT. Do NOT put filenames in quotes.
You sometimes get a 'FILE NOT FOUND' error, but the DOS commands are obeyed
nevertheless. At last we have a standard way to enter the DOS commands (Vol. 1, _
pp. 15-16) in all languages but APL, using the mED, without mBASIC open and 2.
close statements or the cumbersome mCOBOL and mPASCAL programs we previously
published. We hereby award Jim Swift the Serendipity Cup for 1983. To the good
people at Waterloo: We doubt you intended a 'get' to work as it does, but for yr
the love of simplicity, please don't change the method when you next update
software!

ON NETWORKS AND MUPET Jim Swift also reports he has three SPETS and one 8032
WITH SUPERPET networked to a 4040 drive and a Qume Sprint 5 printer,

with MUPET 2. He uses the 8032 for data base work, em­
ploying JINSAM and WordPro4+; in addition, there's an MCM 900 with two double­
sided 8-inch disks, and a Chatsworth card reader (initial trouble getting that
hooked up). Primary system use is APL. Jim offers advice and help to any members
interested, either at 604-753-8969, or through his I.P. Sharp mailbox, SWIFT. We
suspect he'll answer letters, too, if you're without phone or modem.I
RELATIVE CURSOR CONTROL Using those chr$(n) things to move the cursor around

THE EASY WAY is a pain. You can't remember what they mean; you
by Dan Horn can't read a program and figure out what's going on;

and chr$(whatever) runs S-L-0-W in microBASIC, as it
does in BASIC. If you want speed you must convert chr$(whatever) to a string
variable. I've worked out a simple way; it's easy to write; takes less room; is
easy to read and runs faster. You can spot a cursor command at a glance.

SuperPET Gazette— Vol. 1 No. 6 February/March 1983

You ought to adopt this method (or one like it) as a Gazette standard. I use
CAPITALS to make the commands stand out, and never use CAPS elsewhere in a pro­
gram (except in print statements). See a capital letter, you know it's a cursor
command. When two CAPS are used, they are the first letters of the words in the
command:

U$ = Cursor Up
D$ = Cursor Down
R$ = Cursor Right
L$ = Cursor Left
H$ = Home
G$ = One Space

DL$ = Delete Left (SPET repeat key)
DR$ = Delete Right (SPET delete key)
T$ = Tab over one tab setting
CS$ = Clear Screen
EL$ = Erase Line
CR$ = Carriage Return

Why that G$? Well, I used SP$ for a space for a while, but I saw you were using
g$ in the GAZETTE, and I wondered why. Then it hit me! A G-string on a great
girl I know covers the minimum (I mean MINIMUM!), and one space is minimum. Is
that the reason you use it? [Ed: No, but with a mnemonic like that, who can for­
get it? Spangles, Dan?]

All you need in any M-BASIC program is two lines of code, like below. I've got
them on disk as 'start' and call them back as the first two lines of any new
program. The system is as as easy to use as the old PET commands (easier if you
want hard copy). See the wee example which follows the 'canned' code lines. It
runs 15% faster than the same program using chr$(whatever).

10 H$=chr$(1):DR$=chr$(4):EL$=chr$(6):R$=chr$(7):L$=chr$(8):T$=chr$(9)
20 D$=chr$(10):U$=chr$(11):CS$=chr$(12):CR$=chr$(13):DL$=chr$(127):G$=' '
30 !
40 print CS$;'Clear Screen, go to margin and double space all text.';D$
50 print T$;T$; 'LET US CENTER ALL CAPTIONS AND TITLES.';D$
60 print T$; 'And Indent All Instructions One Tab';D$
70 print rpt$(G$,30); 'AND CENTER WARNINGS!';D$
80 print 'Or Delete the Warning';CR$;U$;U$;U$;EL$

The manuals say to use spaces within quotes to move text right, as on the left:
If you want to save on memory, use

print ' CENTER CAPTION.' T$. The line on the left uses 42
bytes. T$ uses a third less. Even

rpt$(G$,20) uses less memory, but runs slower. The fastest method is T$— and it
is faster to use up to three separate commands like U$;U$;U$ than rpt$(U$,3).
After that, rpt$ is shorter to write and as fast. The semicolons I use between
commands run a little faster than '+'. I wish there was a way to set tabs from
program, because T$ is mighty handy. [Ed: See Dr. Spencer's article, this issue.
Dan makes a square wheel round. We've used his system since his article arrived.
It is all he claims: short, easy to write, easy to read, and fast. Comments,
please. We'd like to make it a Gazette standard if the readers agree.]

SETTING SCREEN TABS AND USING CHR$(9) IN MICROBASIC
(c) by John A. Spencer, Chemistry Department, Southern Illinois University

Edwardsville, Illinois 62026

Unlike PET BASIC, the Waterloo MicroBASIC 'print tab(n)' function in program
erases all text it passes over; we modify a table entry only by rewriting the
entire line. We may evade the problem with (1) a cursor-right (rpt$(chr$(7),n)),
which does not erase, lets us translate easily from BASIC to MicroBASIC, but
runs slowly; or we can (2) print with the 'cursor' function, as previously noted

SuperPET Gazette— Vol. 1 No. 6 -41- February/March 1983

in the Gazette. There is a third, often simpler solution.

MicroBASIC implements the TAB key in immediate mode, and in a program 'tabs'
with chr$(9). Both skip the cursor from its current position to the next pre-set
tab without erasing text. If the first tab stop is set at column 8, a tab com­
mand from left margin moves the cursor to column 9; successive tab commands move
cursor to successive tab positions, exactly as on a typewriter.

When SPET powers up, the 10 available tabstops are preset at intervals of 8,
starting at the left margin of the screen (i.e., 0, 8, 16...72). We may change
the stops in the microEDITOR (see manual); upon return to mBASIC, these new
stops remain in effect— a virtue and a nuisance, for while the new stops may
work for a specific table or task, we may well need other tab settings for an­
other task in the same program. (As indeed we do in the demonstration programs
following.)

Though mBASIC provides no direct 'tabset' facility, we may PEEK and POKE the
settings easily once we know where to look in memory. SPET stores tab stops in
successive two-byte memory locations starting at 270 and ending at 288-289. Ord­
inarily, only the odd-valued addresses (271, 273. etc.) contain tab stop values.

To see current values, run the program
120 print chr$(12); 'ADDR','TABSTOP' to the left. We may change values by a
130 for = 271 to 289 step 2 POKE to odd-valued memory locations. For
140 print ij, peek(it) stops in increments of 10, POKE the val-
150 next i% ues as in the example below. As with any

POKE, we must be most careful when we en­
ter the statement. Zero must appear between each value poked and the next, since
the extended POKE in Waterloo mBASIC fills each successive memory location star­
ting at, and after, the pointer or argument, which is 271 in the example.

poke 271,0,0,10,0,20,0,30,0,40,0,50,0,60,0,70,0,0,0,0

The statement POKEs a zero tabstop first into the odd location 271; then places
a zero in each even-valued address (high-order byte of the tab stop), and pokes
the value of the stop in the low-order byte. SPET positions the tab stops with
the full two-byte value, so it is possible to set 'giant' tabs (see below). Af­
ter the POKE above, we find a 0 in locations 287 and 289. This value, being
lower than previous ones, is ignored by SPET when a TAB command is issued. SPET
always executes tabstops in ascending order.

With the tabstops above, any TAB command past the last tabset of 70 (cursor at
71) wraps the cursor to the start of the same line (provided a tabstop has been
set at the left margin, or 0. Lacking a zero setting at left margin, the cursor
wraps to the first set tabstop). If we now 'poke 287,80', and TAB to it, the
cursor wraps to the start of the next, lower line (the cursor always goes one
position past the set tabstop). If we TAB again, the cursor runs to the next
higher stop, at 10 (cursor on column 11).

Next, 'poke 287,95', and TAB across the screen. The cursor comes to rest at po­
sition 16 on the next line, since the tabset of 95 exceeds 80 by 15 (+1). We
cannot POKE another, higher value into memory location 289, for SPET recognizes
only one tabset over 80. Ten tabstops are available; do not attempt to POKE
values beyond address 289.

In a program, we POKE the desired tabset positions and TAB to them in print

SuperPET Gazette— Vol. 1 No. 6 -42- February/March 1983

statements with chr$(9). We may build tabs into strings with chr$(9), as is done
in the demonstration programs which follow. (Note: a reset of tabstops does not
affect the size of the mBASIC 16-space print zones invoked with commas between
items in print statements.)

In 'tab demo#1', following, the last tabset of 90 in line 120 forces a carriage
return and aligns data columns. Note that the program resets normal tabstops
before ending, as does 'tab demo//2', which creates a giant A$ containing em­
bedded TAB characters; it outputs the whole string with nothing more than a
'print A$' at line 300. Two different screen formats are included to show how
easy it is to change the screen display. Simply move the '!' from line 240 to
line 230 to see that change. 'Tab demo#2' takes a while to run; be patient.
Since it resets tabstops to normal positions in line 310, we see the effect of
no automatic carriage return on A$ if we print it in immediate mode as soon as
the program has run.

100 ! tab setting demonstration #1 for SPET : title : 'tab demo#1'
110 ! PEEKs out all tab set locations 270-289 in paired columns
120 poke 271,0,0,9,0,25,0,49,0,65,0,90 ! set tab stops for title
130 print chr$(12);rpt$(chr$(9)+ "ADDRESS" + chr$(9) + "CONTENTS",2)
135 poke 271,0,0,10,0,28,0,50,0,68,0,90
140 for i% = 270 to 289
150 print chr$(9); i%;chr$(9); peek(ij);
160 next
170 print : print
180 poke 271,0,0,8,0,16,0,24,0,32,0,40,0,48,0,56,0,64,0,72
190 stop ! line 180 restores the normal tabs stops on exit

200 ! tab setting demonstration 112 for SPET : title : 'tab demo//2'
210 ! Shows the ordinal value, corresponding character and reverse
220 ! field character.
230 poke 271,0,0,6,0,22,0,38,0,54,0,70,0,86 ! 5 columns
240 ! poke 271,5,0,13,0,21,0,29,0,37,0,45,0,53,0,61,0,69,0,85 ! 9 columns
250 print chr$(12);A$=""
260 for i% = 14 to 127
270 i$ = value$(i%)
280 i A$ = A$+chr$(9)+i$+rpt$(" ",4-leh(i$))+chr$(iJ)+chr$(i%+128)
290 next i%
300 print A$
310 poke 271,0,0,8,0,16,0,24,0,32,0,40,0,48,0,56,0,64,0,72
320 stop

If we format a table with TAB commands, we may selectively replace any element
in the table: put the cursor on the correct line and TAB to the location of the

element. Despite any change in tabsets after
poke 272,7,206 a program is written, we will always reach
print chr$(1);chr$(9);'A';chr$(1) the correct position to rewrite the element.

We may set giant tabs (up to 1998) by setting both high and low bytes, as in the
example to the left, above. It prints the letter 'A' at screen position 1999;
the total tab distance is 256*peek(272) + peek(273) [256*7 + 206 = 1998].

Although we focus here on on mBASIC, we should be able to tab in the same manner
in any SPET language which implements peeks, pokes, and the tab command. -End-

Ed: With what has been published previously, the two articles above pretty well
wrap up cursor and printing control in mBASIC. Embarrassed by riches, we have

SuperPET Gazette— Vol. 1 No. 6 -43- February/nd, uh 1983

absolute cursor control, relative printing control per Dan Horn, the old tab(n)
command, direct tabbing ala Spencer, and the comma print zones. The question in
mBASIC is not how to control printing, but which of the numerous methods is
best fitted for a particular job. Frankly, the other languages seem somewhat
primitive in this respect. Horn's relative control method is a jewel, as is Dr.

Spencer's method of setting tabs
50000 ! title: 'tabset' in program. The long POKEs of the
50010 proc tabset latter are dangerous, however, if
50020 EL$=chr$(6) you make an error, and slow to
50030 D$=chr$(10):L$=chr$(8):R$=chr$(7) write. Having to program a large
50040 H$=chr$(1):T$=chr$(9):print H$; number of tables, we wrote a 'tab
50050 for ii r 1 to 4 ! Clear top of screen set' immediate mode procedure to
50060 print EL$;D$; generate the POKEs if you specify
50070 next ii the stops. To use it, format a
50080 print EL$;rpt$(T$,4);"Index to Tabstops" sample of the table you want on
50090 for ii = 0 to 75 step 5 ! Print index
50100 x = cursor(400+ii) : print ii;
50110 next ii
50120 print H$; "Tab Stops Entered at: "
50130 for ii = 1 to 10 ! Set and mark stops.
50140 x = cursor(241)
50150 print EL$;"Enter Tabstop No.";ii;
50160 input ' ',nn(ii)
50170 ! Vary trapline below at will
50180 if nn(ii)<0 or nn(ii)>95 then 50140
50190 xx = cursor(80+nn(ii))
50200 if nn(ii)=0 or nn(ii)> nn(ii-1)

then print nn(ii);D$;L$;L$;
50210 if nn(ii) >=10 then print L$;
50220 print chr$(212) ! Reverse 'T'
50230 next ii
50240 for ii = 1 to 19 step 2 ! Poke stops
50250 kk = kk + 1
50260 poke 270 + ii,. nn(kk)
50270 next ii
50280 xx=0:kk=0:print D$;" ALL TABS SET "
50290 endproc
50300 !
50310 ! Reset tabs: 'tabreset'
50320 proc tabreset
50330 for ii = 1 to 19 step 2
50340 poke 270 + ii, kk
50350 kk = kk + 8
50360 next ii
50370 kk=0 : print " ALL TABS RESET "
50380 endproc

A FAST REVERSE FIELD PROCEDURE We've received a number of procedures for
FOR PHRASES OR COMPLETE STRINGS printing strings in reverse field, most of

which are pretty slow because they concat­
enate the string and then return to the main program to print it. You need not
do either for long strings; it's far faster to print from the procedure without
concatenation. On short words or phrases to be included in a print statement,
it's easier to concatenate before you print. The speed emerges from the one-
line statement at 220, and from use of integers.

line 7 or 8 of the screen; then
'call tabset'. It prints an index
to screen positions on line 6, 4
a reverse field 'T' at each tab­
stop as you set it, plus the val­
ue of the tabstop. You then see
the tabstops you set and the ma­
terial to be tabstopped, at a
single glance.

Because resetting tabs is as much
of a chore as setting them, we
include a 'tabreset' procedure
which resets tabs to Waterloo de­
fault values. If you want a pro­
cedure which sets tabs in any
chosen and unvarying increment,
you'll find that a simple rewrite
of tabreset won't solve the prob­
lem. We've written a procedure
which lets you set tabs at any
increment from 1 on up. If space
allows, we'll print it at the end
of this issue; if not, next time.

SuperPET Gazette— Vol. 1 No. 6 -*14- February/March 1983

100 ! 'reverse all' : a demo program in mBASIC
110 print chr$(12): zX=128 : p*=1
120 rvsphr$ = " EXECUTING " : call reverse
130 print " Program is Now ";phr$(1) a Reverse Field Word"
140 rvs$= " Full String is Reversed, Printed in Procedure "
150 x = cursor(410) : call reverse
160 stop
170 !
180 proc reverse
190 y% = len(rvs$) : q% = len(rvsphr$)
200 if y%
210 for IX = p% to y%
220 print chr$(ord<rvs$(i%:i%))+z%);
230 next ij
240 print
250 else
270 m = m + 1
280 for ij = p% to q%
290 a$ = chr$(ord(rvsphr$(i%:U))+z%)
300 phr$(m) = phr$(m) + a$
310 next 1%
320 endif
330- y% = 0:q% = 0:'rvsphr$="":rvs$="" •
340 endproc

The procedure to the left will
print words, phrases, or full
strings in reverse field more
rapidly than anything else we
have seen. All full strings to
be reversed are called ’rvsj';
phrases or words, 'rvsphr$'.

A procedure call prints rvs$
quickly; words or phrases are
reversed by a call before the
print statement in which they
are used. Each word or phrase,
upon reversal, becomes phr$(m),
where 'm', as written, can have
a value of 1 to 10. Should you
want more reverse field words,
dimension the array for* more.

Note that the procedure automatically determines whether to provide a reverse
phrase or a full reversed string from the initial values of yt or q%, and t a
the cursor is positioned in the main program with the handy x=cursor(n) coraman

A LINE DUMP FROM SCREEN George Cordahi, of the Civil Service Commission, Room
TO PRINTER FOR APL 204, Frost Bldg. S., Queen's Park, Toronto, Ontario,

Canada M7A 1Z5, forwarded pages of useful general APL
functions which we sent to Steve Zeller, Associate Editor for APL, to evaluate
and to include in his forthcoming series. One of the functions, a line dump from

screen to printer, proved so useful
VCDUMP that we publish it, left, in its EN-

D+QZ,C‘[4] r DIABLO AND 8300P TRY format; we used it to dump itself1]
23

3]
4]
5]
63

73

83

93

103

113
123

C 133

[143

2M3
FI ENTER " QUIT" TO STOP')
C K m s z p i 3
C K m r[8 3
-*•((3vT+l)<10)/ PI
'IEEEH' [JCREATE 3

HW3ZY7[63
D1: LINEHLINEeUAVl 14+11133)/LINE+ »□
-(a/(“4 iLINE) = ’QUIT1)/D2
(D£i? LINE) □PUT 3
-+D1
D2:DUNTIE 3
V

as printed. When you call it with
with CDUMP <RETURN>, it flashes
ENTER QUIT TO STOP ten times. The
cursor then homes. Press <RETURN>
for each line dumped. CDUMP' stops
when it reads the line QUIT.

This dump is for Version 1.1 and
for printers such as DIABLO or
Commodore 8300P, which will back­
space and overstrike. It will not
work on the EPSON MX80 F/T P2. A
slight change allows it to be used
on the EPSON, according to George.

[113 UAViiUAVxLINE) ,143 UPUT 3 For the EPSON, change line [113
as shown at left. This provides

overstruck characters and proper EPSON linefeeds (if the modified version is
used on DIABLO, it will not print overstruck characters, and it double spaces

SuperPET Gazette— Vol. 1 No. 6 -45- February/March 1983

the printout). Note: printers which need to backspace to overstrike, such as
Spinwriter, Diablo, and 8300P, must receive APL characters in XR (External Rep­
resentation) format.

You are free to edit or revise the screen before dumping, so long as you do not
press <RETURN>, as with the mBASIC dumps. George admits to a direct translation
of the mBASIC dumps previously published. We're sure somebody will now write one
of those famous APL one-liners to do the same job. We'd be happy to have it. But
until that one-line gem comes along, we have a way to save the screen in APL to
hard copy. (If you have something to dump on screen, and CDUMP is not in work­
space, you have two options: (1) if there's room,)COPY CDUMP into active work­
space; or, (2) if there's no room,)SAVE workspace to disk,)CLEAR it, and)LOAD
CDUMP. If you're careful, what you want to dump is still on screen.

Anent stopping dumps on 'QUIT', Dr. John Spencer asks why we don't stop on the
words 'DUMP' or 'CALL DUMP', which would be simpler and shorter. Why don't we? A
case of the stupids; the simple things are not easy. We've changed all our dumps
to conform to the suggestion. Simple and easy.

ON BASE II MODEL MST PRINTERS P.J. Rovero (address below) notes that not all
such printers have the APL character set, but

that owners with the buffer option can define and install an almost complete
set. He has a program which runs in 6502 mode and creates any type of character
set (Base II printer only); it's free to any member who sends him a disk and a
self-addressed, postpaid mailer (4040 format only). Disk will have a sample APL
character set on it; don't expect full overstruck characters. An earlier version
was published in COMPUTE! (Feb '82).

MISSING CHARACTER GENERATOR Donald Momberg's mystery of a missing Waterloo
font is solved: both Walt Kutz of Commodore and

Dr. John C. Wilson of Waterloo advised that someone probably had removed the 4K
ROM generator and substituted a 2K generator containing only the old Commodore
fonts. So it turned out. Watch your dealer and repairmen if your boards go back
for repair. Don says the generator is in UA3; best mark it before it leaves
home!

SET-TIME, SET-DATE FROM mFORTRAN [Ed. Note: The methods set forth in this ar-
by P.J. Rovero tide apply also to mBASIC and to mPASCAL;

SMC Box 1610, Naval Postgraduate we publish programs in both languages in
School, Monterey, CA 93940 the pages following, this issue.]

The Waterloo software 'time' and 'date' functions are different than those in
Commodore BASIC, which treats ti$ as a reserved variable which can appear on
either side of an equality (ti may not so appear), as: ti$ = '12304500'. This
allows you to assign a value to ti$ within a BASIC program.

The Waterloo interpreters treat time and date information as functions, which
may appear only on the right side of an equality. You may thus assign the value
of time or date to another variable, but you cannot assign a value to the time
or to the date within mFORTRAN, mBASIC, mCOBOL, or mPASCAL. You can, of course,
set time or date while in the microEDITOR in any of these languages. APL has a
time-setting facility, while mPASCAL has no instrinsic functions for retrieving
the time or date.

The solution to this problem is both elegant and educational. The setdate_ and
settime routines are part of the SuperPET system library (see Chapter 8, As­

SuperPET Gazette— Vol. 1 No. 6 -46- February/March 1983

sembler Manual). The routines unfortunately do not accept parameters in a fully
consistent fashion within the various languages. All the Waterloo interpreters
(except mBASIC) contain an enhanced SYS function which allows parameter passing.
The solution I provide is in mFORTRAN, and can be adapted to the other langua­
ges (though with some difficulty in mBASIC).

You find the addresses of the system library routines in the files 'watlib.exp'
and 'fpplib.exp1, on the language disk, using the 'get' command with the micro-
EDITOR ('old' will not work). The Assembler Manual provides the number and type
of parameters required, along with the return value (if any).

Listing 1, below, shows the subroutine settime. The system routine settime_
requires four consecutive bytes be received, with the integer values of hours,
minutes, seconds, and 'jiffies1 (1/60ths of a second). If you poke these values
to the locations shown, you use a bit of memory just 'above' the screen. Add­
resses and values greater than 32767 are expressed as negative numbers, because
negative integers in Waterloo Fortran are stored in two's complement form with
the MSB set (and look like normal integers greater than 32767). Calculate the
two's complement (the negative number) by subtracting 65536 (64K bytes) from the
actual value. mFORTRAN quite insistently rejects integers greater than 32767.
Note also the form of the SYS function. It can appear only on the right side of
an equality in mFORTRAN, where it is a function, not a command, as in Commodore
BASIC.

mFORTRAN Listing 1 (P.J. Rovero)

settime (hybrid fortran/machine language)

Invoke from mFORTRAN with:
call settime (i1, i2, i3, i4)
where i1=hours, i2=minutes,

i3=seconds, i4=jiffy

settime_ is a system library routine at
$b0f9. It must be set as the two's
complement because it is larger than
32767 if decimals are used.

[Ed: SPET, like most Commodore
machines, won't handle integers
larger than 32767. See separate
article, this issue. The owners
of the new 64 find' that when they
ask ?fre(x), values above 32767
return as a negative numbers; if
subtracted from 65536, the result
is free memory. In SPET, a poked
negative address works as well as
the positive value does, but we
now know that direct hex pokes or
direct hex addresses are far simp­
ler to use— and as fast as doing
the job with negative numbers. In
the listing, left, settime_ can
have the hex address $b0f9. When
we asked Associate Editor Terry

Peterson for his views, he
subroutine settime (hour, minute, second, jiffy) allowed he had a personal

integer hour, minute, second, jiffy, settime abhorrence of negative add-

stash is free space RAM just above the
screen RAM at $87f0. If decimal is used
it must be in two's complement.

settime_ = -20231
stash = -30736
x = pokel(stash, hour)
x = pokel(stash+1.minute)
x = pokel(stash+2,second)
x = pokel(stash+3,jiffy)
q = sys(settime , stash)

end

resses, and sent back a re­
vised subroutine with hex address­
ing. Note how much shorter it is:
(next page).
When we sent a note to P.J. about
use of hex, he wrote, 'I didn't
think of it at the time— I guess
that is what the Gazette is all
about.' Indeed it is. We learn a
great deal from each other. The

SuperPET Gazette— Vol. 1 No. 6 -47- February/March 1983

program timtest (Terry Peterson)

print, timeO
call settime (10,33,00,00)
print, timeO
end

editor was all heated up on the
use of negative integers and the
speed they gave when Terry reined
us in with a few examples of good
hex application. Two approaches to
the same problem shed light.

subroutine settime(ihr,min,isec,jif) The intrinsic function 'cnvh2i',
which converts hex to integer

character newtime characters is used by
newtime = char(ihr)//char(min)//char(isec)//char(jif) Terry to get to
q = sys (cnvh2i('b0f9').newtime) settime_ directly,
return Hex does have its virtues! The

end rest of P.J.'s article follows.]

Listing 2, below, shows the program setdate; the only parameter passed is the
date string. The method is quite straightforward. No muss, no fuss!

Both of these subroutines can be included in any of your mFORTRAN programs that
rquire current time and date information. They can be adapted to other SuperPET
interpreters. And, most importantly, they can encourage you to explore beyond
the boundaries of the interpreters and to use the powerful routines in the sys­
tem libraries. -End-

mFORTRAN Listing 2

program setdate

print, dateO
call setdateCMar 25 1983')
print, dateO

* * «
NOTES:

Only 11 characters are allowed in
the date line. If spaces lie between
characters, quotes must enclose all.

See p. 53, Systems Overview manual.

subroutine setdate(newdate)
character newdate
q = sys (cnvh2i('b0f3'), newdate)

end

end Note that the SYS function is not im­
plemented consistently in SPET. In
mBASIC, for example, Terry Peterson
notes that only one parameter may be
passed in a SYS call— the address of
the called routine. In mBASIC, he
uses a brief routine in machine lan­

guage to 'condition' the D register for the settime call. The procedure below,
written by Terry, passes parameters and sets *time$' in mBASIC. Before you make
your call to the procedure, print 'time$' in immediate mode; then reset time by
a call; then print 'time$' again to see the effect. You can set 'time$' from
program with the procedure, and of course you can print 'time$' in program any
time with a print statement. We received two mBASIC procedures on the same day,
one written by P.J. Rovero, and the second by Terry Peterson, remarkably alike
though each was written without the knowledge of the other.

10 proc settime (h$,m%,s%,j%)
20 ! First put machine code in high memory:
30 poke hex('87f0'),hex('cc'),hex('87'),hex('f6') ! LDD #$87f6, set pointer
40 poke hex('87f3'),hex('7e'),hex('b0'),hex('f9*) ! JMP $b0f9 goto settime
50 ! Now poke new time string just behind.
60 poke hex('87f6'), h%,m%,s%,j%
70 ! Go do it. The procedure to the left is called
80 sys hex('87f0') with the hours, minutes, seconds, &
90 endproc jiffys as parameters in the call:

SuperPET Gazette— Vol. 1 No. 6 -48- February/March 1983

'call settime(15,35,0,0)' sets time at 15 hours, 35 minutes, 0 seconds and 0
jiffys (which Waterloo calls 'ticks').

If you're as curious as we were about the anatomy of the machine code: line 30
puts into address $87f0 the 6809 instruction code ($cc) to load the D register
with a pointer ($87f6) in the next two bytes. Three bytes having been used, line
40 continues at $87f3 with 6809 instruction code ($7e) for a 'jump' to $b0f9,
the settirae_ procedure. When settime_ is called, it apparently (we say appar­
ently because we haven't traced the code) looks at the D register for the add­
ress of the setttime string, which has been poked (in line 60), and starts at
$87f6. (Note: you'll find the instruction codes for the 6809 in Appendix D of
Lance Leventhal's book on the 6809, recommended by Gary Ratliff last issue.)
Having this material in hand, we sat down and wrote a setdate procedure which
works right well. You'll find the library routine 'setdate' at $bf03 (see the
library list, watlib.exp, on the language disk, Version 1.1).

10 proc setdate(dyte$) ! title setdate-b
20 poke hex('87f0').hex('cc'),hex('75'),hex(131') ! LDD #$7531,set pointer
30 poke hex('87f3'),hex('7e1),hex(* bO'),hex('f3') ! JMP $b0f3 goto setdate
40 for iit = 1 to len(dyte$)+1 ! The 1 ends dyte$ with 0. Don't remove!
50 poke hex('7530')+iit, ord(dyte$.(ii%:ii%))
60 next iil
70 sys hex('87fO')
80 endproc

The setdate_ function in SPET wants a string; you have to give it one (or the
ASCII equivalent). Call setdate with the parameter (left). Function 'setdate_'

will not use more than 11 characters, no matter
call setdate('Mar 25 1983') how many you enter. It will use fewer. That's

why the ending 0 (line 40) is required. Note we
had to change the memory location from $87f6 to

$7531 (high RAM), because the 11th character always was clobbered by a reverse
field symbol. Before you call;setdate, ask: ? date$; make the call; then ask: ?
date$ again to see the change.

Since Terry was barely warmed up by the time he finished settime, above, he
rolled out a program with a settime/gettime pair for mPASCAL, below. We also
received (again in the same day's mail) a settime from P.J. Rovero for mPASCAL.
Since Terry's version includes both settime and gettime, we print his version.

program time_test (input, output); (* Listing for mPASCAL *)

type tymtype = packed array [1..4] of char;
var hours, rains, secs, jiffys: integer;

procedure set_time (hrs, rain, sec, jif:integer);
(•set system clock to the time specified by arguments of call*)
var new_time: tymtype;
begin

new_time[1] := chr(hrs);
new_time[2] := chr(min);
new_time[3] := chr(sec);
new_time[4] := chr(jif);
sysproc (11*4096+15*16+9, address(new_time))

end; [Continued, next page.]

SuperPET Gazette— Vol. 1 No. 6 49- February/March 1983

procedure get_time (var hrs,min,sec,jif: integer);
(•returns system clock time as 4 integers*)
var temp: tymtype;
begin

(*call gettime_ ($bOfc) *)
sysproc (11*4096+15*16+12, address(temp));
hrs := ord(temp[1]);
min := ord(temp[2]);
sec := ord(temp[3]);
jif := ord(temp[4]);

end;

begin
get_time (hours, mins, secs, jiffys);
writeln (hours:2,1:1,mins:2,1:',secs:2,'.*,jiffys:2);
set_time (10,33,0,0); (* call to set time at 10:33:00.00 *)
get_time (hours, mins, secs, jiffys);
writeln (hours:2,':1,mins:2,1:1,secs:2,1.1,jiffys:2);

end.

This program writes the old time and then the new, as set in the set_time call.
Terry comments, 'The pair aren't beautiful, but they work.1 They do indeed. Our
thanks to P.J. and to Terry for some useful tools.

MARQUEE CONTEST WINNER Curses! Foiled again! When we announced a marquee con­
test in the December issue, it seemed obvious that you

could write one by printing a character at right margin and deleting a space to
its left to pull the string left— and that data statements (not arrays) would
best store strings. So we gussied up a marquee with an array and no deletes, &
with fiendish delight looped with a goto (forgot real evil: some gosubs). All
that deception failed. Nobody used arrays; everybody deleted. Below, the winner,
written by Terry Peterson, which runs TWO marquees so fast Terry had to slow it
down with a delay loop— take it out at peril to thine eyeballs.

10 ! marquee_n. Entry by Terry Peterson Dec 21
20 print chr$(12):row1_end=8*80:row2T_end=11*80:up_del$ = chr$(11)+chr$(4)
30 c = cursor (661) : print "The marquee does not affect lines below"
40 c = cursor (741) : print "(or above). When tired of this, press STOP."
50 loop
60 read d$
70 if d$<> ""
80 d$ = d$ + " " ! Delete this line to run strings together
90 for a%=1 to len(d$)
100 if cursor(row1_end) then print d$(a%:a%);up_del$;
120 if cursor(row2_end) then print d$(al:a%);up_del$;
130 for ti=1 to 10 ! Speed readers, take this
140 next ti ! delay-loop out.
150 next a%
160 else
170 restore
180 endif
190 endloop ! Following are strings to be displayed & terminating """
200 data "Next Week, We Open the SuperPET Follies, Starring Walt Kutz"
210 data "Walt Recites 'The Boy Stood on the Burning Deck', Sings, Dances "
220 data "The Editor Uses GOTOS"
230 data ""

SuperPET Gazette— Vol. 1 No. 6 -50- February/March 1983

N.ASM

1 1 i i i i
! N.LST ! ! N.B09 ! ! N.CMD!
» i i I i t

BITS BYTES & BUGS
by: Gary L. Ratliff

The first order of business is to debug the example program from the last
issue. The error was hinted at in my closing remark: "Bye for now." The
correct command to leave the editor is: bye. The correct exits from the
programs used in the development system are: bye to leave the EDITOR, q to leave
the MONITOR, and RETURN to leave the ASSEMBLER or the LINKER.

As many of you have now realized,
__________ the DEVELOPMENT system for the 6809
! ! processor is quite complicated. It

includes the editor, assembler, linker,
and the monitor programs. The diagram
at the left depicts the relationship of
the files and programs in the system.
Let us now examine these files. The LST
file is found on page 13 .of the manual
and won’t be repeated.

EX1.MAP
Root :
ex1.b09 = 1000 - 1005 .0006
Length of Module = 0006
EX1.B09
Errors 0
$0005 ; Length
Object
866lb780003f
From the above listings the

purposes of the many files created by
the development system become known:

v The LST file incorporates the ASM file
.which.we created with the EDITOR and a
listing of the program along with the
translation of the mnemonics into their
equivalent hexadecimal instruction.
LDA J'a is translated into 86 61. The
86 is the hex code for immediate load of
the 'a' register. The 61 is the ASCII
equivalent of the letter: 'a'. The MAP
file tells where the assembled code is
to be placed. The b09 file contains the
length of the file as well as the object
code. However, its most important
information is the error count.
If this count is not zero the linker
Will not produce the MOD file which is a
file which may be executed either from
the monitor or from the main menu. To
prove this for yourself get the file
ex1.b09 and use the EDITOR to change
the error count from 0 to 1. You will

________________ find that the linker will refuse to
process the code due to errors on assembly; the error being the altered count.

You may have thought that the task of placing a single character on the
screen was trivial. However, the process of moving text from one area in memory
to another is one of the most frequently performed tasks in any computer.
Therefore, for our example program of this installment, let's expand; instead of

The map
for your

(Loads and Runs the Module)

i
! USER TASK
i

SuperPET Gazette— Vol. 1 No. 6 -51- February/March 1983

sending a single character, we'll send an entire message.
The assembly code to perform this task is presented below. As promised

each example will contain at least one error for you to find. You were able to
debug the code in the first installment so put on your thinking caps and find
the error in this code.

The most common convention is to signal to the computer that it has
reached the end of any message by ending that text with a zero. This is the
method which is used by the STROUT routine of the 6502. If you examine 6809 text
messages you'll find all of them end with a zero character to mark the end of
string text (as we do below). Next, since we have 2 index registers, x and y, we
will let one of these registers point to the message and another of these
registers point to the location in memory where we want to place the message.
The character by character text of the message is sent thru the 'a' register of
the computer. The code to accomplish this task is presented below:

; send a message to the screen
screen equ $8000 [tell the program where the screen is.]

ldx if msg [point the x register to the text to send.]
nextc Ida ,x+ [indexed addressing next issue in detail.]

beq done [if this is zero the message is complete.]
sta ,y+ [store the message on the screen.]
bne nextc [go get another character of the message.]

done swi [the task is finished so exit to monitor.]
msg fee "This is an example of a string text message. "

fee "A long string is sent by the continued use of "
fee "the fee directive of the assembler. To end this "
fee "message the feb directive is used with a zero which "
fee "indicates to this program that the message is "
fee "finished. "
feb 0
end [This is the end of the program.]

The finished program is ready to be placed on the disk with a: p text.asm
command to the EDITOR. Since the starting location of the code remains the same
as that of the program ex1.cmd, there is no point in creating a separate cmd
file for this program. We need only clear out the text in the microEDITOR and
load the cmd file for our first program. This is accomplished with the command
*d to the editor to clear text area followed by the g ex1.cmd to load our
previously created cmd file. Clearly if we could change all of the "ex1'"s in
this program to read: "text" our task of creating the cmd file would be
completed. Fortunately we are able to be accomplish this easily with the edit
command: *c/ex1/text/. This search-and-replace command changes 'ex1' to 'text';
we needn't re-enter the file. Now that the cmd file has been completed, we save
it to disk with the 'p text.cmd' command.

This ends another installment. Good luck in finding the error. Next time
we will take a look at the addressing modes of the 6809 processor. -End-

A SHORT, HANDY PEEK The program below peeks any number of consecutive hex lo­
cations you specify, and writes 5 columns to the screen,

showing addresses in hex and contents in decimal. See page 60 for a tiny change
which makes this program fall flat on its face.

10 ! Peekit: Writes hex locations, decimal peeks
20 print chr$(12)
30 input "Enter hex value of start, number of peeks: ", hx$, end$
40 for ii% = 0 to value(end$)-1
50 print hex$(hex(hx$)+ii%)="; peek((hex(hx$))+iit) ;" ",
60 next ii%

SuperPET Gazette— Vol. 1 No. 6 -52- February/March 1983

nnn
(C) 1983 000 THE APL EXCHANGE 000 STEVE ZELLER

uuu

Most of you, like rayself, bought the SPET for its Basic/Fortran/Pascal and fig­
ured that, with time, some 6809 programming might also be in order- The icing
on the cake, however, is the bundling of APL into this package. A Programming
Language (APL), developed by Dr. K. E. Iverson in 1962, is a great language for
a micro for a number of reasons. Because of its powerful primitives, the amount
of code you will write and interpret will be small relative to the other lan­
guages. This means speed! When you invoke an APL primitive, you're pulling in a
6809 routine to do the job: more speed! For example, inverting a data matrix in
Fortran is very slow with its interpreter, but APL's "domino" gets the job done
in an acceptable time. And you don't have six pages of code either!

Second, the APL processor allows you to extend the language at will. User-built
functions conform to APL's simple syntax and can be intermingled with other APL
operators. Thus, your command parsing is built-in. APL recognizes your command,
finds the routine, and executes it. If you are comfortable with vectors and ma­
trices, you will love APL. As you become familiar with the language, you will
find that the SPET is an extremely powerful and flexible "desk calculator".
APL's input/output to the terminal is simple and makes data handling easy. In
addition, the handling of disk files is straightforward. Finally, APL's work­
space concept means that you can keep functions and data together in a very
flexible fashion and, if you need something from another workspace, you can
simply read it in.

Lest I sound too optimistic, there are a few drawbacks. If you are only com­
fortable manipulating data element by element (or bit by bit, for that matter),
then APL will prove hard to fathom. It requires a different "mind set" and its
looping and branching capabilities are not well developed. The different
character set often requires translating between ASCII and APL; the lack of
lower case letters is often bothersome, and you probably can't print out APL
characters on your printer. Finally, once you get "rolling" in APL, you will
find that a 28K workspace is just not big enough! The "mind set" is, of course,
up to you. We'll cover solutions to the.other problems in the coming months.

This column will explore various features of APL and provide lots of coding
examples. It is not intended to be a "rehash" of the standard APL introductory
material; that exists elsewhere. Instead, the emphasis will be on building
tools to get you started in APL and doing useful and/or amusing things quickly.
Needless to say, contributions are most welcome. The Waterloo APL manual is
very good and should be read carefully. However, it is more of a reference
manual than an introductory text. If you find that the examples are simply not
enough to get you started, two other APL texts are recommended: (1) "APL: An
Interactive Approach" by Gilman and Rose (John Wiley & Sons, 1974) and (2)
"APL-STAT" by Ramsey and Musgrave (Lifetime Learning Publications, 1981). Both
are available in paperback. All work in this column will be done in Version 1.1
of WCS APL.

Since functions are so important in APL, we immediately turn to the function
editor. Once we master the mechanics of using the editor, we will examine some
things to keep in mind when designing functions for use in your system. All
functions in APL consist of a header that declares the name of the function
followed by one or more lines of APL. The form of the header also indicates the

SuperPET Gazette— Vol. 1 No. 6 -53- February/March 1983

way in which it will be invoked (with or without arguments), how it will return
information and whether or not any of the variables within the function are
"local". Since the function's header can also be edited, we can change the form
of the header later. Nevertheless, the design of the function is of paramount
importance since it determines the way your function interacts with other func­
tions in the workspace and with APL primitives. As a first step, we need to
become familiar with the editor. Two APL symbols are very important to the ed-
or:

THE FIRST IS 'DEL' OR 7 (SHIFTED G ON THE ASCII KEYBOARD); THE SECOND.
OR A (SHIFTED H ON THE ASCII KEYBOARD).

'DELTA'

THE 7 OPERATOR MOVES YOU FROM IMMEDIATE EXECUTION TO THE FUNCTION EDITOR. IN
EXAMPLE 1.1, WE DECLARE THE FUNCTION NAME AS 'TEST1' BY TYPING VTEST1
AND HITTING <RETURN>. SINCE NO SUCH FUNCTION EXISTS IN THE WORKSPACE (WS), THE
THE EDITOR PROMPTS US FOR THE FIRST LINE OF INPUT WITH'. [1], AND LEAVES THE
CURSOR ON THAT LINE. TYPE IN: 'THIS IS A TEST' AND HIT <RETURN> . WE ARE THEN
PROMPTED FOR ANOTHER LINE: [23. LEAVE THE EDITOR BY TYPING 7 ON THIS LINE AND
THEN HITTING <RETURN> AGAIN. WE ARE NOW BACK IN IMMEDIATE MODE. HIT THE 'PF3'
KEY (SHIFT 3 ON THE NUMERIC PAD) TO SEE EVERYTHING THAT IS DEFINED IN THE WS.
WE NOW HAVE A FUNCTION ENTITLED 'TEST1'. TO EXECUTE THIS FUNCTION, TYPE: TEST 1
AND HIT <RETURN>. VOILA— THERE'S OUR MESSAGE.

EXAMPLE 1.1:
A...VTEST1

[1] 'THIS IS A
[2] 7

TEST1
THIS IS A TEST

TEST'
B... VTESriCD]

TEST1
'THIS IS A SILLY TEST'
'DON''T YOU AGREE?'
7

TEST1
THIS IS A SILLY TEST
DON'T YOU AGREE?

[0]
[13
[23
[33

C. VTESTllU] D... VTESTllW]
C o] TEST1 [03 TEST1
[13 'THIS IS A SILLY TEST' [13 'THIS IS A SILLY TEST'
[2] 'DON''T YOU AGREE?' [23 ’(I WOULD ARGUE)'
[3] [1.1]*(I WOULD ARGUE)' [33 'DON''T YOU AGREE?'
[1.2] [3V GOODBYE' [*3 'GOODBYE'
[4] 7 [53 [A43

TEST1 [43 ’(I WOULD ARGUE)' EDITED
THIS IS A SILLY TEST [53 [A23
(J WOULD ARGUE) 7
DON'T YOU AGREE? TEST1
GOODBYE THIS IS A SILLY TEST

DON'T YOU AGREE?
(I WOULD ARGUE)

LET'S EDIT THE FUNCTION AGAIN. TYPE: 1TEST1 AND HIT <RETURN>. THE FUNCTION AL­
READY EXISTS, SO WE ARE NOW PROMPTED FOR THE NEXT LINE, [23. TO SEE WHAT OUR
FUNCTION LOOKS LIKE, CLEAR THE SCREEN <SHIFT CLEAR> AND THEN HIT THE 'PF1' KEY,
(SHIFT 1 ON THE NUMERIC PAD). NOTE THAT OUR HEADER IS NOW ON LINE [03. WE CAN
USE THE SPET'S CURSOR CONTROLS TO EDIT ANY LINE ON THE SCREEN. CHANGE LINE Cl]
TO 'THIS IS A SILLY TEST' BY MOVING THE CURSOR TO THE 'T' IN 'TEST' AND USING
THE 'INSERT' KEY TO INTRODUCE SIX SPACES. NOW TYPE 'SILLY', MOVE THE CURSOR TO
THE END OF THE LINE AND HIT <RETURN>. THE EDITOR WILL RECOGNIZE THAT LINE [1]

SuperPET Gazette— Vol. 1 No. 6 -54- February/March 1983

HAS BEEN CHANGED AND WILL AGAIN PROMPT YOU FOE LINE [2]. (NOTE THAT ANY CHANGES
YOU HAVE MADE ON A LINE ARE NOT REGISTERED UNTIL YOU HIT <RETURN> AT THE END OF
THE LINE. THUS, IF YOU DECIDE NOT TO CHANGE A LINE AFTER ALL, MOVE THE CURSOR
TO ANOTHER LINE). LET'S ADD TO THE FUNCTION BY TYPING 'DON'T YOU AGREE?' AFTER
THIS PROMPT. WE ARE NOW PROMPTED FOR LINE [3]. LEAVE THE EDITOR AGAIN BY TYPING
V AND <RETURN>. , EXECUTE THE FUNCTION AGAIN BY TYPING: TEST1 <RET URN> IN IMMED­
IATE MODE.

NOW. LIST THE FUNCTION IN IMMEDIATE MODE BY TYPING: VTESTlCDDV <RETURN>. THERE
IS THE LISTING, BUT WE CAN'T EDIT IT: WE'RE STILL IN IMMEDIATE MODE., TO EDIT,
ENTER THE SAME LINE BUT TAKE OFF THE SECOND V. WE GET THE LISTING AGAIN, AND WE
ARE LEFT IN THE EDITOR THIS TIME. WHILE WE'RE IN THE EDITOR, LET US INSERT A
LINE BETWEEN [lj AND [2]. WE CAN OVERRIDE THE PROMPT FOR LINE [3] BY TYPING THE
LINE: "[1.1] 'I WOULD ARGUE'" <RETURN> ON THE SAME LINE. BY USING A FRACTIONAL
LINE NUMBER, WE TELL THE EDITOR TO INSERT THE NEW LINE BETWEEN [l] AND [2]. THE
THE EDITOR NOW INCREASES THE LINE NUMBER BY THE NEW INCREMENT, .1. RATHER THAN
BY THE DEFAULT OF UNITY. THIS IS HANDY IF WE WISH TO INSERT SEVERAL NEW LINES
BETWEEN [1] AND [2]. SINCE WE DON'T WISH TO INSERT SEVERAL LINES, LET'S GO BACK
TO THE ORIGINAL NUMBERING SCHEME BY TYPING: [3] ’GOODBYE' <RETURN> AFTER THE
PROMPT OF '[1.2]’. THE NEXT PROMPT OF: [4] INDICATES THAT WE ARE BACK TO LINE
NUMBER INCREMENTS OF 1. DID OUR INSERT WORK? TO CHECK, CLEAR THE SCREEN AND HIT
'PF1'. THIS RENUMBERS THE LINES AND SHOWS US WHAT THE FUNCTION WWOULD LOOK LIKE
IF WE WERE TO NOW LEAVE THE EDITOR. SURE ENOUGH, EVERYTHING IS IN THE RIGHT OR-
ER. GO BACK TO IMMEDIATE MODE BY TYPING V <RETURN> ON THE NEXT LINE. CHECK EXE­
CUTION WITH: TEST1 <RETURN> IN IMMEDIATE MODE.

EDIT THE FUNCTION ONE MORE TIME. TYPE: vmSTl[[]] <RETURN>. THIS GIVES A FRESH
LISTING TO WORK ON. WE'RE NOW PROMPTED FOR [5]. RATHER THAN ENTER ANOTHER LINE,
LET'S DELETE LINE [<+] BY TYPING: [A4] <RETURNl. NOW WE'LL MOVE LINE [2] TO
THE END OF THE FUNCTION. TO DO THIS, MOVE THE CURSOR UP TO LINE [2] AND CHANGE
THE LINE NUMBER TO *[4]. THEN MOVE THE CURSOR TO THE END OF THE LINE, AND HIT
<RETURN>. PRESS 'PF1' TO SEE WHAT HAPPENED. WHOOPS— WE'VE MOVED THE LINE, BUT
IT'S STILL AT [2] ALSO. NO PROBLEM— WE JUST HAVE TO REMEMBER TO DELETE THE OLD
LINE BY TYPING: tA2] ON A NEW LINE. GOT. IT THIS TIME? HIT 'PF1' ONE MORE TIME
TO BE SURE. THEN LEAVE THE EDITOR WITH V AND EXECUTE THE FUNCTION WITH: TEST1
<RETURN>. TIRED OF THIS FUNCTION? LET'S REMOVE IT FROM THE WS BY TYPING:)ERASE
TEST1 <RETURN>.

NEXT TIME, WE'LL TAKE A CLOSER LOOK AT THE FUNCTION'S HEADER AND BEGIN TO CON­
SIDER HOW TO DESIGN A FUNCTION.

nn
6425 31ST ST., N.W., WASHINGTON, D.C. 20015 U.S.A.

uu

If you sit down and work the problems Steve Zeller presents above, you may find
yourself receiving mysterious ERROR signals when you're doing everything right.
Press PF3, and look at the entries following 'SI'. A lot? Clear them with right-
arrow <RETURN> (keep at it until SI is clear). Errors disappear. This had us go­
ing up the wall until Steve passed the word.

THE THIRD KEYBOARD We all know SPET has two keyboards: one for the APL font
when APL is loaded, and a second for the Waterloo font in

the other languages. Well, there's a third. Poke the APL font from any language
but APL. Try the board. It's neither Waterloo Roman nor APL. Since we must use
the APL font in the microEDITOR to edit and integrate text and programs, we de­
fine the third keyboard on the next page. The printouts show the shifted APL

SuperPET Gazette— Vol. 1 No. 6 -55- February/March 1983

symbols above the symbols of the unshifted keys, row by row. The Third Keyboard
symbols apply in all languages but APL when the APL font is on screen.

APL NO SHIFT - 1 2 3 4 5 6 7 8 9 0 (+ £
APL SHIFTED -) < = >] V A 0 X X $
ASCII keys 1 2 3 4 5 6 7 8 9 0 • —

APL NO SHIFT Q W • E R T Y U I 0 p -4- H
APL SHIFTED ? w € P ~ \ + i o * { H
ASCII keys q w e r t y u i o p [\

APL NO SHIFT A S D F G H J K L c - 5*
APL SHIFTED a r L V A O ♦ □ * 0 }
ASCII keys a s d 7 g h j k 1 •t §] 7...

APL NO SHIFT Z X C V B N M • • /
APL SHIFTED c 3 n u 1 T 1 » •• \
ASCII keys z X c V b n m t • /

Now, there's a project for Waterloo or someone clever: when you poke the APL
font (or get it in the Monitor) and are not in APL, the keyboard should be APL.
Ye ed is a touch typist; one mad APL hunt-and-peck keyboard is bad. enough; two
boards are intolerable. In the time it takes to do one APL page on the 'Third
Keyboard', we could write ten pages in ASCII and take the afternoon off fishing.
Or is there a way to get the pure APL keyboard somewhere in the system library?

WORD PROCESSING SuperPET is enormously versatile — more than we suspected— at
ON SPET Word-Processing (WP). Associate Editor Gary Ratliff opened a

door to terra incognita in late December, and we can safely
say now that we can pull into the microEDITOR (mED) any sequential file in any
SPET language, including APL and BASIC 4.0, as well as any WordPro or Wordcraft
file. We include files from DEVELOPMENT, but are not sure of the MONITOR. The
methods are now fully defined. Text and programs may be integrated in the mED
and printed from it in finished form. Say goodbye to the old paste-pot and to
hand-typing programs into text. Associate Editor Gary Ratliff is considering a
program to pull mED files back into WordPro, but the more he and the editor use
the microEDITOR for final printouts, the’less inclined we are to go back into
WordPro. We find the paging and printing of complex text so simple and so fast
from mED that we aren't anxious to pull material back into WordPro.

This issue of the Gazette was integrated (text and programs) in the micro­
EDITOR. Part of the issue was written in WordPro; part in Wordcraft; part in the
mED directly. All programs were pulled off disk DIRECTLY into the mED— and text
wrapped around them there. The editor will never print an issue again by any
other means, the method being fast, simple, and totally adaptable to all SPET
languages.

This is the first article of a series on WP, starting with the microEDITOR.
Those who need an occasional WP system will find it more than adequate. You need
learn no new commands, nor lay out several hundred dollars for WP software. Load
the mED from the language disk by itself, outside any language. While it will
not wrap words to and from the next line when you insert or delete, and will not
justify, underline, or print bold face, it has virtues:

(1) What you see on screen is exactly what you will print to printer; (2) marg-

SuperPET Gazette— Vol. 1 No. 6 -56- February/March 1983

L

mt
My
'ip.

ECLECTIC SYSTEMS CORPORATION i - T y , V J S RO. Box 1166 • 16260 Midway Road
Order TOLL FREE 1-800-527-3135] Addison, TX 75001 • (214) 661-1370

Dram atically Improve Your
Programming Productivity

With CCSM® ANSI Standard MUMPS !
If you are not familiar with MUMPS you
must read the rest of this advertisement

C C SM C is more than just a programming language. It is a well integrated data management system combining with one syntax what other
operating systems would call 1) an application programming language; 2) a job control language; 3) a linkage editor; 4) a database
management system; and 5) a communications monitor.
PROGRAM MANAGEMENT:
C CSM e provides all programming management facilities needed to manaae programs and program files. Programs can be created, edited,
cataloged and debugged from within CCSM e . Programs can be as large as disk capacity. A resident algorithm rids memory of least fre­
quently used variables and program modules so that what you need off-disk normally resides in memory.
STRING POWER:
C C SM 1 makes string handling easy with its extensive set of string operations and functions. Variable length strings can be used routinely
without the obstacles presented by most other programming languages.
PATTERN MATCHING:
C C SM c can “filter" user input with a useful pattern matching that will result in fewer user or device errors. For example: dates, zip codes
and names can be tested for validity with a single statement.
GLOBALS:
C C SM C obviates the need for traditional read and write.operations on secondary storage devices by allowing data elements to be directly
referenced as a set of subscripts; all the details of file oroanization and retrieval are handled by the system.
TIM ING :

; . C C SM 4 enables a programmer to associate timing constraints with several operations. This feature allows testing for terminal malfunctions .
as well as prompting users in time-critical dialogue.
DATA BASE MANAGEMENT:
Sorts and merges are not necessary as CCSM C automatically stores data in a dynamically allocated balanced tree structure. Random ; .
access to any data item requires at most three disk reads.
C CSM C UNMATCHED IN PROGRAMMING PRODUCTIVITY:
System houses that program in CCSM C (MUMPS) find that their costs are lower than those of their competitors using other languages.
Fewer lines of code are necessary per application. Dimension statements are not required. Subscripts may be alpha, numeric or any legal string.
Data types need not be defined and can change freely throughout as CCSM C can recognize when it is dealing with alpha, numeric, Integer or
floating-point data types. CCSM 1 gives the professional programmer a full set of software tools designed for real-life tasks and problems he jfr
consistently encounters in the production and maintenance of application software. CCSMC adheres rigidly to ANSI M UM PS standards,

t
which make it transportable to larger processors manufactured by DEC, TANDOM, DATA GENERAL. HARRIS and others. Additionally
C C S M ° gives the less-experienced programmer the tools to do a professional job on formidable programming ap p lications .____

.. ■ — 1_ . _ _________________ • ; r . v •. _ : ' y ' ' 1 '

CCSM is the Price/Performance Leader!
The most advanced system design for small m achines. C C S M C departs from the traditional M U M P S partition >
concept with state-of-the-art com puter software techniques. CCSM ® utilizes a com plete virtual m em ory •
concept to provide the following features:

• N o lim itation on routine size.
• N o lim itation on local variab le symbol tab le sizes.
• O nly a single copy of any routine resides in mem ory, (i.e ., m ultip le users take advantage of a single copy

of a routine.)
J i • O nly those parts of routines actually being used are m em ory resident.

• DO's of other routines take no longer than DO's of local labels.
C C S M C is availab le for the following 6 8 0 9 systems:

C om m odore Su perP et (single-user) H A ZE LW O O D C om puter System s H E L IX
TA N O O u tpo st-11 G IM IX
Radio Shack Color C om puter Southw est Technical Products

M ulti-U ser systems (up to 16) for $ 8 0 0 .0 0

You m ay order from EC LEC TIC S Y S T E M S by calling toll fre e 1 -8 0 0 -5 2 7 -3 1 3 5
from 10A M to 4P M CDT Monday through Friday. Texas residents call 1-214-661-1370.
O r you m ay w rite to EC LE C TIC S Y S T E M S C O R P O R A T IO N ,

1 6 2 6 0 M idw ay Road, Addison, Texas 7 5 0 0 1 .
CCSMC Copyright COMP Consultants, Inc.

ins set easily when you (a) offset the left printer margin to the right, and (b)
control the right margin by the number of characters on a line. With 12-pitch
type (12 characters per inch), 80 characters per line is fine (a screenful). If
you want a wider right margin, or have 10-pitch type or larger, draw a right
margin on the screen with a fluorescent felt-tip pen or a clear but visible
strip of translucent tape, or a bit of white, fine string. Hit <RETURN> when
your text approaches it. Yes, mED saves pure text.

Better, (3) mED needs no obscuring and confusing format commands; (4) it saves
your whole text as a continuous page in memory. Paging is a snap; (5) headers
and footers (including page numbers) are easily pulled off disk and inserted
into text with a 'get1. If, for example, you want 54 lines per page, type; 54
<RETURN> at the command cursor in mED. Screen cursor goes to line 54. 'Get' the
footer (or page number). Then, just below the line of the page number, say: +54
<RETURN> at command cursor, and the screen cursor jumps forward 54 lines. You're
ready to 'get' a footer, page number, and header at the next page break; (5)
last, you can, of course, get ANY material off disk— repititive forms, programs
in any SuperPET language, or text created in WordPro or Wordcraft.

• * * »•
If paging manually in the computer age bugs you: we've used IBM, Wang, Lanier,
and CP/M machines running WordStar. Despite the clever line-locks, text-ties and
conditional forced-paging methods available, all the above are too stupid to
page intricate, long text correctly the first time through. Pages always break
at the wrong place. We usually make five passes through WordPro's global output
to page the normal ten pages of the Gazette (at least 2 hours). In less than
half an hour the editor manually paged and printed this intricate issue of over
twenty pages. Note we said 'intricate'. Plain text is best paged automatically.

The mED pages superbly not only because it counts and locates lines so well, but
also because a change on one page does NOT cascade into all succeeding pages. If
you avoid a bad page break (caption at page bottom; text on the next page) by
adding an extra line on that page, the remaining pages remain untouched. You are
not trapped by WP software insisting that you must have EXACTLY the same number
of lines on every page.

Free memory in SPET will hold some 500 lines, single-spaced (about 9.3 pages).
If you want more, no problem. Save any sequence of complete pages to disk. Keep
the last, partial page as the start of another file. It's a snap with (1) a
'put' to disk using the RELATIVE line commands of mED for the complete pages,
and (2) a delete command from from mED to get rid of those pages in machine RAM.
You're left with the partial page, the start of another file. Suggest you work
with six-page files, to leave room for additions and revisions.

Next issue: How to pull WordPro and Wordcraft files into the mED, BASIC files
into mED or into WordPro; use of program PRINTALL for automatic paging, footing,
and heading of simple text; handling APL files intermixed with ASCII files.

ON MUMPS You'll note an advertisment on the previous page for MUMPS. We've
been curious about it for some time, since it's one of the few com­

mercial pieces of software available for SuperPET. We'd like to run it, but will
have to confine ourselves to what we read: that MUMPS is (1) a programming lan­
guage, (2) an integrated data management system with one syntax for (a) applica­
tions programming, (b) job control, (c) linkeage editing, and (d) monitoring any
communications with other computers. It was developed at Massachusetts General
Hospital as a Utility Multi-Programming System (you can get MUMPS out of that if
you try hard). The objective: a simple high level language which will handle the

SuperPET Gazette— Vol. 1 No. 6 -57- February/March 1983

data base easily and powerfully. No, we did not get the information above from
the advertiser, but from sources we think are objective. If any reader has in­
formation or hands-on experience, let us hear what you know.

THE SPUG DISK LIBRARY Our Secretary, Paul V. Skipski, has labored for several
months to put together the first SPUG disk. It will be

available in any disk format (from 2031 through 8050) for $10 U.S. Write Paul
Skipski (address on the masthead, last page). Send money only (no disk); specify
disk format. Included on the disk: (1) All programs of moment printed in the
Gazette to date; (2) SuperPET diagnostics programs, which cover both the lower
32K of memory and the upper 64, as well as the Serial Port; (3) a number of long
programs we had no room to publish, in several languages; (4) our text-handling
program, PRINTALL, which processes text created or integrated in the mED, both
to screen and to printer, and will handle text and programs in all the SPET
languages, incuding APL and BASIC 4.0, as well as text created in WordPro and
Wordcraft and integrated in the microEDITOR; (5) instructions for using PRINTALL
(which will be supplemented next issue); and, (6) a great deal of material on
COMAL, plus, as filler, a few BASIC programs and aids which may be handy. Some
of the 'filler' probably won't fit into 4040 format, but all the. SuperPET mater­
ial will.

All programs are coded as to language: 'settime-b', for example, is a program
to set time$ in mBASIC; 'settime-p', an mPASCAL version. Material for the mED
is coded '-e'; COBOL, '-c', etc.

WARNING on the test programs. Some of them require an RS232 port termination if
you don't have anything on that port. Paul V. Skipski makes the termination. We
have one, and it's well made and works. Paul will make you one, on order, for
$10.00 U.S., including shipping.

If you're wondering at the prices: everything we 'make' on disks and RS232 hard­
ware goes into the SPUG bank account to pay for postage and printing on free
trial issues which we mail to anyone who asks. (Over 500 sent out so far, at a
cost which is NOT negligible. We figure there are over 16,000 SuperPETS in Can­
ada, U.S., and Western Europe, so we have a long way to go. Our membership grows
at the rate of 8-10 owners a week; we have members now from Hawaii through West
Germany, Norway, England, and Switzerland).

THE EDUCATIONAL LIST Teachers at a number of high schools, colleges, and uni­
versities are members of SPUG; some complain of lack of

software for teaching. We suspect there might be virtue in having the teachers
talk directly to each other, so that they need not individually invent the wheel
at each school. If you're a teacher and think an EDUCATIONAL LIST (names, add­
resses, area of interest), distributed to all educators who use SPET, would be
useful and worth the effort, drop us a postcard. We aren't going to tackle this
project unless there's demand for it. At the moment, we propose to charge $2.00
for registration, and to mail two lists out each year to all registrants, leav­
ing it up to them to write or call each other, based on the 'area of interest'
notes on the list. Educators, let us hear from you!

SOME ADVICE NEEDED AND SOME PASSED One of our members (Barry Bogart, 2405
West 15th Ave., Vancouver, B.C. Canada,

V6K 2Z1) has crazy output to printer on the serial port. It seems to happen on
second and succeeding lines, about 7 or 10 characters in from the left margin.
Characters simply are deleted at this point. When Barry double spaces text, the
problem disappears. Anyone with a solution: write Barry and send us a copy.

SuperPET Gazette— Vol. 1 No. 6 -58- February/March 1983

George Cordahi also has a problem: Using an MX80 F/T P2, he outputs good APL
to printer with a filename of 'ieee4'; but if he uses 'ieee4' from other langu­
ages, the printer prints characters per PET ASCII. When he uses the filename
'printer' in all but APL, printer outputs ASCII as it should. We suspect his
dealer stuck in some hardware which translates SPET's 'ieee4' output from ASCII
to PET ASCII, but if so, why does 'ieee4' work for APL? If you can help, write
George at the address on page 45, this issue.

When George asked our advice, we told him to use 'ieee4' on APL and 'printer' on
everything else, based on Bert Lance's famous line: 'If it ain't broke, don't
fix it.'

Barry Bogart writes that he'd like to see those SuperPET owners who use COMPU­
SERVE identify themselves as SuperPETters and SPUGers; from his contacts with
the I.P. Sharp group, he knows of about 50 SuperPET owners using APL, but adds
that 'there must be many, many more SuperPET owners on COMPUSERVE.'

CONFUSION AMONGST SuperPET has three built-in editors, and from letters we
AND AMIDST EDITORS see a general confusion in their names. One editor is the

APL editor, and runs only in that language. The second is
the microEDITOR, which is common to all other languages (with certain variations
adapting it to that language). We haven't been consistent in abbreviating its
name, so from here on out, it's the mED. Unfortunately, the mBASIC manual calls
the mED the 'General Editor', and gives no name to the editor you have at hand
in mBASIC as soon as it's loaded— which we christen the 'mBASIC editor'. We'll
avoid the term 'General Editor' because it's confusing. To recap: the editor
common to all languages but APL is the microEDITOR (mED). In mBASIC, you have
two editors, the 'mBASIC editor', which is always available in immediate mode,
and the microEDITOR, which you call up with: edit <RETURN>.

NEGATIVES, HEX, AND From previous material this issue, you know that you
INTEGER ARITHMETIC can peek, poke, or address in mBASIC in positive deci­

mal integer, negative decimal integer, or in hex alone.
If you use decimal integers above 32767, SPET converts them to negative values.
For example, say: i% = 32800. If you then ask: ? i%, it will equal -32736. But
SPET will peek or poke the right address, and will not give you an 'overflow'
error. Statements such as: poke 32900 + it will run without trouble so long as
i% does not push you over 65536 bytes. Peeks, pokes, and addresses are one mat­
ter. Arithmetic operations are quite another, as we see below.

* <
If you write a little for...next loop which requires arithmetic— W00PS! See pro­

gram, left. It gives you can immediate 'OVER-
20 for i% = 32767 to 32767+4*80 FLOW' error, but continues to run. SPET warns
30 print peek(i%);" you that you must beware the results. In this
40 next i% ! Example 1 program, everything is okay. SPET peeks the

right addresses. But if this were a computa­
tion in which you sought numerical results, you'd be in bad shape. You can avoid
the error message from the program above by the revised program at left, below.

The result is the same, but without an err-
10 screen? = 32767 or message (note previous paragraph on the
20 for it = 0 to 4*80 freedom to peek, poke or address without a
30 print peek(screen? + it);" problem). Now for the next question: what
40 next it ! Example 2 happens when you cross the threshold of

32767 with hex?

SuperPET Gazette— Vol. 1 No. 6 -59- February/March 1983

Try the little peeks below, using hex, in immediate mode. They work well. Now,
knowing that hex peeks work okay, try the same peeks

? peek(hex('7fff')) in a for...next loop. (Use program 'peekit', on page
? peek(hex('8000')) 52, this issue). Enter 'peekit'; then change ii? to ii

wherever found; tell 'peekit' to start at $7ffa and to
iterate 7 times (which should peek $8000 as the last address). W0000PS! Find an
'illegal quantity error'? When the loop exceeds 32767, the program refuses to do
the job! Why does it run okay when everything is in hex and integers, and refuse
to run-when you make 'ii' a floating point value? We haven't sorted this one out
yet, but we do know that so long as you intermix hex and integers, you can cross
the boundary at 32767 without overflow error. Mix hex and floating point and the
result is instant disaster. Note we can louse hex up in immediate mode. Ask: ?
hex$(34750). You'll get an error. You must ask ? hex$(34750 - 65536). Also note
that Version 1.0 rejects -32768 as an integer value. Version 1.1 accepts it, as
it should.

If you want speed, negative peeks and pokes let you stay within integer limits,
but hex peeks and pokes are just as fast, and work easily with integer arithme-
etic. In mFORTRAN, you must employ negative decimal numbers in peeks and pokes
above 32767; the language will not accept peeks or pokes above decimal 32767. It
will, however, accept hex peeks and pokes, just as mBASIC will. We discuss mPAS­
CAL later. Since the Systems Overview manual gives addresses in hex, conversion
to decimal (either by you or by SPET) just slows things down; When first we men­
tioned negatives pokes, peeks, and addresses to Associate Editor Terry Peterson,
he said: 'Negative pokes are for Apples and the birds.' He's right.

Not only .is hex fast, it works in harness with integer arithmetic in mBASIC. If
you revise the programs below, written by Terry Peterson, you'll find that no
conversion to integers of hex values will speed the programs up. We ran a series
of tests of pure integer, pure hex, and of hybrids. Pure hex and hex-integer hy­
brids run just as fast as pure integers, at least in mBASIC. We'd like to get a
specific definition of hex and integer use in mFORTRAN and mPASCAL in the detail
we've done it above for mBASIC, if there are any substantial differences. Sus­
pect there are few, and that most limitations emerge from the nature of an 8-bit
processor, as implemented in the 6809. Integers are stored in SPET in 2 bytes;
if we reserve one bit for the sign, we have 15 bits left; 2 to the 15th power is
32768 ($8000). You can't store that, in1 binary, in 15 bits:

7 6 5 4 3 2 1 0 Power of 2
8 7 6 5 4 3 2 1 Bit number LOW BYTE
128 64 32 16 8 4 2 1 Value of Bit, if Set

(15) 14 13 12 11 10 9 8 Power of 2
(16) 15 14 .13 12 11 10 9 Bit number HIGH BYTE
12768) 16384 8192 4096 2048 1024 512 256 Value of Bit, if Set

Bob Davis, Associate Editor in mPASCAL, comments that 'there's, a significant
difference between microBASIC and microPASCAL in handling integers; be aware of
it when shifting from one to the other. mPASCAL does not indicate an error on
integer underflow and overflow! It just keeps on adding or subtracting bits to
the rightmost position (in the registers) and letting them fall off or putting
them on the leftmost position as appropriate. Apparently some versions of PASCAL
will return a run-time error on integer underflow or overflow; one of the better
texts says to program a check of the magnitude of integers to avoid such errors.
I recommend such a check with Waterloo PASCAL.'

Bob continues: 'You can peek or poke with positive or negative integers in

SuperPET Gazette— Vol. 1 No. 6 -60- February/March 1983

mPASCAL indiscriminately. I heartily agree with the manual which says it is more
convenient and simpler to use positive addresses.1

We ran a little mPASCAL program which illustrates the trap in mPASCAL. It adds
32768 to 32767, integer-style. The answer comes out: -1 [65535 - 65536]. When
overflow occurs, SPET simply converts to the negative integer with no warning,
which can raise some *!J$ with results. - End -

Last month, we published a package of procedures to draw, save, and retrieve
SPET graphics, both poked and printed, and promised a better scrn_get. Instead,
find two programs, which work together; one saves all graphics from SuperPET
(from ordinates 1-11 as well as others); the second retrieves all graphics.
Substitute them for the programs published last issue, which work only for
keypad graphics. Both programs were written by Terry Peterson.

NEW SCRN_SAVE
NEW SCRN GET

There's a trap in the poked graphics (ordinates 1-11); STOP
is chr$(3); when you try to get it off disk, as part of aa$,
below, it STOPs recovery of aa$. Terry therefore converts all

chr$(3)'s to chr$(14) in scrn_save, below, to cure the problem; then reconverts
chr$d4) to (3) in scrn^get before it is poked. Since this process isn't needed
for the keypad graphics, Terry offers an alternate recovery and printing process
in scrn_get, which prints the keypad graphics very quickly [more specifically,
use the 'print' option for any graphics with ordinates above chr$(31)]. Last,
Terry recommends you not use ordinates above chr$(11) for poked graphics; the
small white square obtained is equally available from chr$(0), which works
nicely. The programs below assume you follow this advice. Note that Terry pass­

es parameters to the procedures below;
10 proc scrn_save (file$, nlines)
20 aa$ = "
30 for ii%=hex('8000') to

hex(''8000')+nlines*80-1
40 jjj=peek(ii%)
50 if jj%=3
60 aa$ = aa$+chr$(14)
70 else
80 aa$=aa$+chr$(jj%)
90 endif
100 next ii?
110 open #12, file$,output
120 print #12,aa$: close //12
130 endproc

10 proc scrn_get (file$)
20 open #11, file$, input
30 linput #11, aa$
40 ! the next single line substitutes
50 ! for the rest of procedure if no
60 ! ordinates < chr$(32) in image.
70 pp?=cursor(0):print chr$(1):pp?=cursor pp%
80 !

they are 'file$', the name of the file
when saved, and 'nlines', the number of
lines of graphics to save. Enter these
string and numeric values when you call
procedures; i.e.:
call scrn_save ('picture', 9), where
'picture' is the filename, and you want
'9' lines of graphics saved.

Scrn_get, below, works in exactly the
the same way. You must enter the file­
name in parens when you make a call to
scrn_get. You can easily modify the
procedure to pick either the 'print' or
'poke' options; the 'print' option is
by far the fastest, but works only if
no ordinates < chr$(32) are in the disk

file.

90 while idx(aa$, chr$(14))
100 ii% = idx(aa$,chr$(14))
110 aa$(ii%:ii?=chr$(3)
120 endloop
130 jj?=1 : mm%=jj?
140 for ii% = hex('8000') to

hex('8000')+len(aa$)-mm%

One other point deserves comment: note
how Terry uses pp% = cursor(O). If you
go to immediate mode, and put cursor on
line 1, left margin (home position) and
enter 'pp% = cursor(O)', you'll find on
printing 'pp%' that it equals 81. The
method stores cursor position. Terry em-

SuperPET Gazette— Vol. 1 No. 6 -61- February/March 1983

ploys it to position cursor (line 70,
scrn_get) to about where it was when
he issued command to call scrn_get;
i.e., to get ’READY’ out of the retriev-
image. (0) in the command is a dummy
argument; you can as easily use (a) or
(whatsit). If variable names such as

(a) or (whatsit) have value, however, the command will move the cursor to the
appropriate screen position; e.g., if ’a’ = 1560, cursor will go to 1560. Using
'O', as Terry does, makes more sense. (Thanks to Frank Brewster for the same
comment.) The method is most useful.

THE SIEVE OF ERATOSTHENES (REVISITED) VISITED The Gilbreaths, in the January
1983 issue of BYTE, published ra­

tings of a host of computers, using the 'sieve' as a benchmark. Being curious,
we tried the 'sieve' in mBASIC and mPASCAL,^faithfully adhering to the spirit of
the benchmark. We were startled, for mBASIC ran a lot faster than we thought it
would, but mPASCAL was incredibly slow. We couldn't' benchmark APL, because there
is not sufficient memory in SPET to handle an array of 8190 floating-point num­
bers, and APL in SPET won't handle integers. Even so, Steve Zeller ran the sieve
up to a value of 1000; so we ran the mBASIC program for the same value (below).
mAPL is rather slow, too. Both mPASCAL and mAPL are interpreted in SPET; if they
were compiled, the difference in run times would be large (but so would it be
for a compiled mBASIC). We'll have more to say next issue on what we learned us­
ing ten different mBASIC programs for the 'sieve'. One startling fact: if you're
using integer arithmetic in a for-next loop, even converting '1' and 'O' to in­
teger values saves significant time in a loop which is iterated many times. Here
are the run times of the test, and some values from the Gilbreath report:

Language Computer Time for One Iteration (seconds : minutes)

mBASIC SuperPET 258 4.3 (full sieve, n=8190)
mPASCAL SuperPET 2060 * 34.33 (full sieve)
BASIC * PET 318 5.3 (full sieve. Gilbreath)
BASIC HP 85 308.4 5.14 (full sieve. Gilbreath)
mAPL SuperPET '92.85 1.55 (n = 1000)
mBASIC SuperPET 38 0.63 (n = 1000)
BASIC 6502, SuperPET 'under 200' Report by Terry Peterson
mFORTRAN SuperPET 94 1.57 (n = 500)

Terry Peterson ran the mFORTRAN trial and said he hadn't time to wait for a lar­
ger value of n. Even so, mFORTRAN is slower than mAPL in SPET. Note that we
do not know what program the Gilbreath report used for BASIC; Terry notes that
he remained faithful to the benchmark, but used a for...next construct instead
of what was essentially a 'while' loop. We learned that 'while' loops are slow
indeed in SPET, compared to for...next loops. When we changed one, single, inner
loop from a while...endloop to a for...next loop, we cut run time from 336 to
258 seconds. Terry suggested it, and it worked beautifully.

Let the times above be no derogation of SPET. The interpretation of mPASCAL and
mAPL is a virtue; Jim Strasma, in the latest MIDNITE REVIEW/PAPER, compares UCSD
PASCAL with mPASCAL in the classroom, and finds mPASCAL far superior because
students can debug with the interpreter, without first compiling (long waits),
only to find errors in the compiled code. Moreoever, SuperPET was designed to

(cont. from last page)
150 poke ii$,ord(aa$(jj%:jj%))
160 jj% = jj% + mm*
170 next ii%
180 open #12, file$, output
190 print #12, aa$: close // 12
200 endproc

SuperPET Gazette— Vol. 1 No. 6 -62- February/March 1983

operate with a host computer. Debugged code, up and running, can then be compil­
ed for runs on a big, fast machine.

While we deeply appreciate the convenience of interpreted code and the debuggers
Waterloo built into the SuperPET software, we'd still like to see compilers made
available for SuperPET. The editor uses his in business, and bought it for its
structured languages, which make programming a delight. Not very much software
is written to handle the financial end of legal work, so we had to write ours.
It'd be a delight to be able to compile it, once it's up and running. SuperPET
is not solely for classroom use, Waterloo. The commonest question we are asked
is: "When do we get compilers?" The sooner the better. About 10 per cent of our
members are educators. The rest of us want and need compilers. (And so do some
of the teachers, from letters we've received.)

S u p e r P E T R e f e r e n c e C a r d

5 Have you ever wondered what the /%*%$%& is the difference between 1c*/ %*//' and q
3 1*c/ %*//'? Tired of flipping that switch just to do a 'collect'? This card 8
5 reveals the mysteries of the data editing commands and 'meta-character' strings, n
5 using clear and useful examples. It also contains data on: q

All the uses of GET. PUT & DIRECTORY.

r \

All the SuperPET file types and formats. / ^ ~

l >

\ r

) How to issue DOS commands from the editor.
Jj V . RS-232C and the terminal facilities. 8

ROM subroutine and other important addresses.

o The cost? only $ 1 0 , postage and handling included. Also available is the APL- «
8 microEDITOR interface, the SuperPET facilities tutorial disk, and the SuperSTATS 8
8 package. Send a check immediately or write for more information to: p

D y a d i c R e s o u r c e s C o r p o r a t i o n
2 4 0 5 W e s t 1 5 t h A v e n u e

V a n c o u v e r , B . C . C a n a d a V6K 2 Z 1

5 C I S 7 3 1 4 5 , 1 5 1 5 (6 0 4) 7 3 6 - 6 9 0 6 I P S A BBOG 8

j ('c*/ %*// hangs up; '*c/ %*//' does noth ing; but * * c * / %*//' removes a l l spaces from l e f t .) g

SETTING TABS IN ONE INCREMENT

50400 ! Set tabs in increments:
50410 proc tabeven(incr)
50420 for ii : 1 to 17 step 2
50430 poke 270 + ii, kk
50440 if kk+incr >= 80 then flag = 1
50450 while flag and ii<17
50460 ii = ii + 2
50480 poke 270 + ii,0
50490 endloop
50500 kk = kk + incr

The program below, if called with the increment
in which tabs are to be set, will set them even­

ly across the screen, from an
'tabeven' increment of 1 between tabstops

on up to 79.

We don't like the default tab-
set in SPET, because there is
no tabstop at the right margin.

If you edit much, you must be
able to tab to the end of any

SuperPET Gazette— Vol. 1 No. 6 -63- February/March 1983

50510 if flag then quit line, for there you hyphenate
50520 next ii and in writing a program place
50530 poke 288,0,79 ! Tab at right margin & for continued lines. Tabever.
50540 kk=0:flag=0 always sets a right margin tab-
50550 endproc stop, whatever the increment.

If you'd prefer not to have it,
change the for-next loop value of "17" and all other "17's" to "19", and strike
line 50530. The modified program, with an increment of 8, will then give you a
standard Waterloo format. In whatever settings, tabstops not used are set to 0.

This program, together with a settime setdate pair, we keep in a little 'bootup'
package, which we run right after loading mBASIC. It sets time, date, and tabs,
first thing in the morning. Mighty handy.

A MACHINE LANGUAGE DUMP FROM Jeff Larson, Route 1, Box 261D, Rustburg, VA
SCREEN TO PRINTER OR DISK 24588, runs a big DEC during business hours and

a SuperPET at home; the editor on the DEC is a
line editor only; Jeff brings his stuff home as an ASCII file and edits in the
mED, which he says is far superior. One trouble: he had to copy SPET monitor
dumps by hand, and after a few sessions wrote a dump to printer, which we got
about two weeks ago, and forwarded to Gary Ratliff. Shortly after, we heard the
sound of jubilee from Mississippi; Gary called and wanted to stuff the dump into
this issue. We objected; we'd entered and run it; it always dumped twenty lines,
even if 19 of them were blank. Blank lines smash the printhead back and forth so
violently we threw a ribbon cartridge off the carriage and ground it to bits. We
refused to inflict that catastrophe on anybody else. Gary said he'd fix it, and
fix it he did, just in time to print. Note that the entry of two "qq's" at left
margin will kill the dump. You can print alphanumerics only, not blank lines.
(We wish KEYPRINT, the machine-language dump in BASIC, were similarly written.)

Best of all, the program can be modified to dump to disk as well as to printer.
We'll try to publish some modifications next issue.

6809 CODE SCREEN DUMP Jeff Larson brings us his routine to print the contents
by Gary Ratliff of the screen. He uses a serial printer. By changing the

type and size equates in this program, however, you may
have it print to whatever type of printer you wish (see 1st program line). Size
20 is designed to translate listings from the monitor, while an increase of size
to 40 will give screen dumps of the monitor. Finally, size of 80 will print all
of a screen line. Thanks to Jeff, we'll publish next issue a memory map of the
6809 side of SuperPET.

Old timers may remember purchasing those early disassembly listings for early
PETs at $29.95, because Commodore was required by Microsoft to protect the con­
tents of the interpreter. A lot of the 1979 programs for the PET were designed
to tell users how to overcome this and how to get at the contents of BASIC code.
My first published article was an 18-byte routine to do exactly that. Waterloo
is to be commended for making the discovery of the inner workings of SPET easy
for the user. Can you imagine a screen dump routine in 6502 in early '79? No!
First we had to dig into the guts and figure out how it all worked. Oops! And
another biggie: there were no printers then (at least not from Commodore!).

;screen dump routine
xref initstd_
xdef outptr
xref openf

dump.asm [Ed. This came in one day before
we had to print this issue; on
trial, it clobbered mBASIC when
located at $7000. So we moved it

SuperPET Gazette— Vol. 1 No. 6 -64- February/March 1983

xref closef_
xref fputchar_
xdef prtline

type equ 2
size equ 80

Ids #$0fff
jsr initstd_
ldd # mode
pshs d
ifeq (type - 1)
ldd # typ1

endc
ifeq (type -2)
ldd # typ2

endc
ifeq (type -3)
ldd # typ3

endc
jsr openf_
leas 2,s
std outptr
if ne

ldd #$8000
std line
loop
ldx line
jsr prtline
ldx line
ldb #80
abx
stx line
ldd ,x
cmpd #$7171
quif eq
cmpx #$8780

until eq
ldd outptr
jsr closef_

endif
swi
prtline ldy # si
loop
ldb ,x+
pshs y
pshs x
pshs d
ldd outptr
jsr fputchar_
leas 2,s
puls x
puls y
leay -1,y

until eq
ldb #$0d

up to $756e; it still clobbered
mBASIC. Then, using a part of
Jeff Larson's memory map, we put

a top-of-memory pointer in
use 2 for printer 3 for ieee4 at $756c— and it works like
use 40 for monitor 80 for line a charm. Find below the spe­

cific instructions on how to
enter the dump, load it, and use
it. (And for that pointer!)

;Initialize S pointer
;Initialize standard 10
;Load address of file mode
;Push file mode into S
jserial
;load address of 'serial'

jprinter
;load address of 'printer'

;ieee4
;load address of 'ieee4'

;0pen file
;Remove file mode from S
;File control block address
;If file opened ok,
;Load beginning of screen ram
;Store in 'line'

Entering: Load DEVELOPMENT, and
enter the mED. Create dump.asm
(first program left) and file
it. Then enter dump.cmd (second
program left, below), and file
that also. Put both files on
disk in drive 0. Put a language-

1 (for exports),
and link (See Gary
1. PP- 33-36) on .
the monitor; say:

>1 dump.mod <RETURN>
Then get your printer ready, be­
cause when you give 'g', below,
you'll dump the screen. Suggest
you enter a 'qq' on a blank line
ABOVE repeat ABOVE the next com­
mand to stop the dump:

>g 756e <RETURN>
And stand back!

disk in drive
Then assemble
Ratliff, Vol.
how. Then, in

;Load beginning of line
;Print line (20 characters)
;Put beginning of line into x
;80 is number of columns
;Add 80 to get beginning of new line
;Store in 'line'

;test for 'qq' at start of line
;printing complete if reached
;Compare with screen bottom ($8750 would skip last line)
;Loop until last line done
;Load file control block
;Close file

ze

;Put character into b
;Push number of interations onto S
;Save x
;Push d onto S
;Load file control block
;Send character to selected device
;Remove file mode from S
;Restore x
;Restore y
;Decrement y

If you intend to work with any
high-level language in SuperPET
after 'dump' is in memory, you
must change the top-of-memory
pointer. If you call 'dump' with
a 'sys' call without doing this,

SPET crashes. Thud.

Again, thanks to Jeff
Larson, we know how to do
that, too. The top of mem­
ory pointer is found in
two bytes, $0022 & $0023.

AFTER repeat AFTER 'dump' is in
memory, poke as follows: (find

;Quit when y = 0 •
;Load carriage return character

hex and decimal versions below)

SuperPET Gazette— Vol. 1 No. 6 -65 February/March 1983

pshs d
ldd outptr
jsr fputchar
puls d
rts

;Push onto S
;Load file control block
;Ser.d to device
; Restore d

poke hex(122'),hex('751),
hex('6c')

OR:
poke 34, 117, 108

typ1

typ2

typ3

mode

outptr
line
end

fee "serial"
feb 0
fee "printer"
feb 0

"ieee4"
0

fee
feb
f cc
feb
rmb
rmb

Ar.d here is

Ir. mBASIC, top of memory is at $7fff; you
car. confirm top of user memory with peeks of
$22 ar.d $23; but we were in a rush and thus
backed off more than the 86 bytes needed to
hold the code for 'dump'. The top of memory
location can be written into this program; it
nay change with language (no chance to check).
Suggest you confirm top of memory before using

0 'dump1 in other languages. When you peek $22
2 and $23, convert the high byte ($22) and the
2 low byte ($23) to hex, and join them in order.

The values 117, 108 (above), thus converted,
become $756c.

the dump.cmd file for the linker:

'w1

"dump"
org $756e
include "disk/1.watlib.exp"
"dump.b09"

The entire 'dump' DEVELOPMENT file is on the
SPUG disk announced this issue. You can amend
any of the files to conform to your language
and your printer. Or you can load the module
w-lth: >1 dump.mod <RETURN> from the Monitor

in the microEDITOR in any language which uses it (all but APL). After you've
poked the proper values for top of user memory, you car. get 'dump' by a SYS
call: sys hex('756e') or, in decimal, sys 30062. Bloody well better have your
printer ready! We emphasize again: the 'qq' (no quotes) to stop the dump MUST
be on a line above the call, whether from language or from the Monitor.

While coding and entering 'dump' may look complicated, we got it into memory the
first time we tried, easily; we used the step-by-step instructions Gary Ratliff
provided last issue. You enter the program for dump exactly and precisely in the
same way as you entered the program to print a simple 'a' at the top left of the
screen. Gary laid a firm foundation on method.

A THICK ISSUE This issue is large because (1) the readers contributed, (2) we
secured our first advertisers; ar.d, (3) ar. anonymous member with

a large heart gave us the extra cost of printing and postage. Keep the material
flowing in! This issue just about dries up the well.

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$

Name:

APPLICATION FOR MEMBERSHIP, SUPERPET USER'S GROUP

Disk Drive: Printer:

Address:

Street, PO Box City or Town State/Province/Country Postal ID//

Enclose Annual Dues of $10:00 (U.S.) by check or money order, made out to Secretary,
SPUG. Overseas dues: $20.00 U.S. Mail to: Paul V. Skipski, Secretary, SuperPET
User's Group, 4782 Boston Post Road, Pelham, N.Y. 10803, USA.

SuperPET Gazette— Vol. 1 No. 6 -66- February/March 1983

Newsletter published by the SuperPET Users' Group (SPUG): editorial offices at
PO Box 411, Hatteras, N.C. 27943. Secretary, Paul V. Skipski, 4782 Boston Post Road,
Pelham, N.Y. 10803. Membership applications and inquiries to Mr. Skipski. Newslette’
material to Hatteras, attn: Dick Barnes, Editor. SuperPET is a trademark of Commo­
dore Business Machines, Inc. Contents of this newsletter copyrighted by SPUG, 1983
except as otherwise shown; reprinting by permission only. SPUG members are author­
ized to use the material. Enclose a self-addressed, postpaid envelope with all
material submitted and all inquiries requiring reply. Membership: $10.00 per year,
U.S. in North America, $20.00 overseas and elsewhere. See enclosed application.

For all outside the U.S.: All nations members of the Postal Union offer
certificates good in the postage of any other country for a small charge. The Union
includes Canada, U.S., most European nations, Russia, China, and most of Araby. Each
Gazette issue weighs one ounce: 20 cents U.S. & Canada, 80 cents to Europe. For
other rates, see your local post office.

PRINTED MATTER

